

嵌入式系統導論

1.

Consider a 1Kx8 RAM chip (i.e., it has 1024bytes).

- (1) How many address lines and data lines are there in the chip?
- (2) How many such chips do you need to construct a 16Kx16 memory?
- (3) What Kind of decoder do you need to connect this 16Kx16 memory?

2.

Explain "Big endian" and "Little endian" with an example?

Hint : Consider the following C program:

```
#include<stdio.h>
int main() {
    unsigned char buf[]={1,2,3,4};
    short *p = (short*)buf;
    printf("==%hd\n", *p); return 0;
}
```

Discuss the output of this program if you run it on a Big-Endian machine? and what if run it on a Little Endian machine?

3.

Assume the integer a contains 38 and integer b contains 49.

What would be the result of a and b after doing the following 3 statements:

a = a xor b;b = a xor b;a = a xor b;

4.

Assume that \$s1 and \$s2 are used for the input and both initially contain the integers a and b, respectively. Assume that \$v0 is used for the output.

	add	\$t0, \$zero, \$zero
loop:	beq	\$s2, \$zero, finish
	add	\$t0, \$t0, \$s1
	sub	\$s2, \$s2, 1
	j	loop
finish:	addi	\$t0, \$t0, 100
	add	\$v0, \$t0, \$zero

Please describe in one mathematic formula what it computes (in terms of a, b).

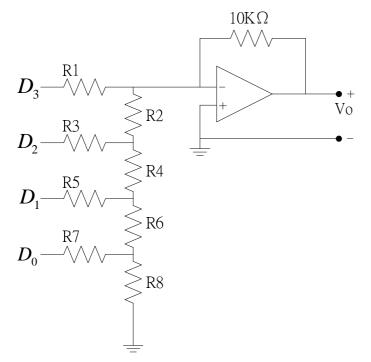
- 5. 簡單說明:
 - a.) 何謂阻抗匹配 (impendence match)?
 - b.) What is Open-Drain?

Pin Name	28L PDIP/ SOIC	24L QFN	Pin Type	Standard Function
GPB0	3	24	I/O	Bidirectional I/O Pin (5.5 volt tolerant inputs: dpen-drain outputs) Can be enabled for interrupt on change, and/or internal pull-up resistor.
		Bidirectional I/O Pin (5.5 volt tolerant inputs: open-drain outputs). Can be enabled for interrupt on change, and/or internal pull-up resistor.		

c.) What is Setup time and hold time?

			600			$1.8V \leq Vcc \leq 5.5V$
11	TSU:WP	WP <mark>setup time</mark>	4000		ns	$1.7V \leq Vcc <$
			600			1.8V
						$1.8V \leq$ Vcc \leq
						5.5V
12	THD:WP	WP hold time	4700		ns	$1.7V \leq Vcc <$
			600			1.8V
						$1.8V \leq$ Vcc \leq
						5.5V
13	ΤΑΑ	Output valid from clock		3500	ns	$1.7V \leq Vcc <$
		(Note2)				1.8V

6. 簡單比較:


(1) IC family:	TTL vs. CMOS
(2) CPU family:	RISC vs CISC

7. [Electronics]

An OP AMP is used in the circuit of 4-bit digital/analogue converter (DAC) shown below. $D_3 \sim D_0$ are digital signals with logic '1' of 5V and logic '0' of 0V. Please find the resistance R1~R8 to make the output analogue voltage V_0 to be:

$$V_0 = -\left(\frac{1}{3}\right) [D_3 \times 2^3 + D_2 \times 2^2 + D_1 \times 2^1 + D_0 \times 2^0] V$$

8. [Operating system].

Consider a virtual memory system with the following properties:

- 12-bit virtual byte address
- ♦ 256-byte pages
- 65536 bytes of physical memory

The system uses a single level page table. The contents of the page table are *partially* shown below (where VPN: Virtual page number and PPN: Physical page number).

VPN	Valid	PPN	VPN	Valid	PPN
0	0	-	6	1	6
1	1	0xfd	7	0	7
2	1	0x48	8	0	-
3	0	-	9	1	0xfe
4	1	0x55	А	1	0xf2
5	1	0x32	В	0	

- (i)What is the total size of the page table for each process on this machine, assuming that the valid, protection, dirty, and use bits take a total of 4 bit and that all the virtual pages are in use?
- (ii) Please convert the following virtual addresses into physical addresses: 0xae2, 0x258.